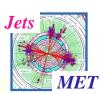
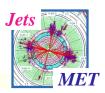


FILTERING OF MIN.BIAS DATA FOR PRODUCTION



S.Abdullin, UMD

- Why do we need filtering ?
- ooHit Filter (criteria)
- Results


WHAT WE WANT TO FILTER (OUT)

- Abnormal energy deposits ("ILOSS" problem)
 - single ECAL crystal
 - single HCAL readout
- Too high-p min.bias events (?)
 - far out of exponential tail
- Something else (?)

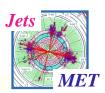
FILTERING CRITERIA

■ Variables : ■ Max. value

• ratio_e = max. Ecal hit
$$E_T / \hat{p}_T$$
 1.0

• ratio_h = max. Hcal scaled* hit
$$E_T / \hat{p}_T$$
 1.0

• ratio_g = vector
$$E_T$$
 sum / scalar E_T sum 0.95


Event is filtered (rejected), at least in log file, if:

- one of the variables overstep corresponding max.value
 .AND.
- max. Ecal or (scaled) Hcal hit > coresponding limit, $10 \ \, \text{or} \ \, 15 \ \, \text{GeV respectively}$ (as for $\hat{p}_{\scriptscriptstyle T} \sim 0$ max. Ecal and Hcal hist can be sizeable)

^{*} scaled: multiplied by corresponding sampling factor

RESULTS

Code (.h, .cc, BuildFile): http://cmsdoc.cern.ch/cms/production/www/cgi/data/Filters/Calo02_Id_1/

Rejected Events

Run # Ev. #	Reason
19 : 474	$\hat{p}_{T} = 14.0 \text{ GeV}, \text{ max. Hcal hit } E_{T} = 17.3 \text{ GeV}$
40 : 389	bad Position() in EE ("unknown" exception)
61 : 164-185	absent Ecal hits (!) - the entire run #61 excluded
70 : 440	$\hat{p}_T = 110 \text{ GeV}$
77 : 166	$\hat{p}_T = 104 \text{ GeV}$
139 : 241	$\hat{p}_T = 160 \text{ GeV}$
202 : 428	$\hat{p}_T = 112 \text{ GeV}$
220: 20	$\hat{p}_T = 137 \text{ GeV}$
227 : 130	$\hat{p}_T = 3.2 \text{ GeV}$, max. Hcal hit $E_T = 15.5 \text{ GeV}$
255 : 174	$\hat{p}_T = 117 \text{ GeV}$
314: 42	$\hat{p}_T = 10.9 \text{ GeV}$, max. Hcal hit $E_T = 19.7 \text{ GeV}$